TEORIA DE LA RELATIVIDAD

En 1915, Albert Einstein publicó una teoría de la gravitación basada en estas ideas geométricas y cambió para siempre la forma de ver el universo. No hay atracción sino cambios en la curvatura del espacio ―y también del tiempo―, producidos por la presencia de materia. La geometría del espacio-tiempo curvo es distinta de la geometría de Euclides, que usamos cotidianamente. Una consecuencia notable de esta forma geométrica de entender la gravitación es que en un espacio curvado la luz también debe seguir trayectorias no rectilíneas. Esto sería notorio, por ejemplo, si la trayectoria de la luz pasa cerca de un cuerpo celeste muy masivo.

 Esta desviación no sería posible en la teoría de Newton, pues al no tener masa, la luz no podría ser atraída gravitacionalmente. Sin embargo, según Einstein, la luz se mueve en el espacio siguiendo la geometría. Si la geometría del espacio está curvada por la presencia de un cuerpo celeste, la luz no debería propagarse de forma rectilínea. La desviación de un rayo de luz al pasar cerca del Sol fue comprobada en 1919 durante un eclipse, lo que marcó el comienzo de la fama de Einstein y de sus ideas.
La relatividad general permitió además hacer otras predicciones de gran exactitud, como la forma de la órbita de Mercurio, que es inexplicable usando sólo las leyes de Newton. Desde entonces esta teoría de Einstein ha permitido descubrir fenómenos aún más asombrosos, como los agujeros negros, la expansión del universo y el Big-Bang. A fines del siglo XVI, Galileo Galilei observó que bajo la acción de la gravedad todos los cuerpos que inician el movimiento de la misma manera caen o siguen las mismas trayectorias, sin importar si son más livianos o más pesados. En el siglo siguiente, Isaac Newton presentó su ley de gravitación universal que dice que todos los cuerpos en el universo se atraen con una fuerza que es proporcional a sus masas e inversamente proporcional al cuadrado de la distancia entre ellos. Una consecuencia de esta ley es también el hecho de que el movimiento gravitatorio resultante no depende del peso del cuerpo. Inspirado por la observación de Galileo y por el carácter universal del movimiento gravitatorio, Einstein pensó que la gravitación podía entenderse mejor como un fenómeno geométrico, como una propiedad del espacio mismo. En lugar de ver la gravedad como una fuerza de atracción, se la puede entender como consecuencia de la curvatura del espacio, generada por la presencia de materia o energía. Einstein expresó matemáticamente estas ideas en su famosa teoría de la relatividad general. La ecuación de Einstein relaciona la geometría del espacio-tiempo con la materia y la energía presentes en el universo.Una nube de gas forma un disco alrededor de un agujero negro, emitiendo gran cantidad de radiación. Ésta es producida por la fuerte aceleración a la que se somete el gas justo antes de desaparecer succionado hacia el centro del agujero. Un chorro de gas y radiación es despedido a lo largo del eje de rotación.


Relatividad especial
La teoría de la relatividad especial, también llamada teoría de la relatividad restringida, fue publicada por Albert Einstein en 1905 y describe la física del movimiento en el marco de un espacio-tiempo plano. Esta teoría describe correctamente el movimiento de los cuerpos incluso a grandes velocidades y sus interacciones electromagnéticas y se usa básicamente para estudiar sistemas de referencia inerciales . Estos conceptos fueron presentados anteriormente por Poincaré y Lorentz, que son considerados como originadores de la teoría. Si bien la teoría resolvía un buen número de problemas del electromagnetismo y daba una explicación del experimento  de Michelson-Morley, esta teoría no proporciona una descripción relativista adecuada del campo gravitatorio.

Tras la publicación del artículo de Einstein, la nueva teoría de la relatividad especial fue aceptada en unos pocos años por la práctica totalidad de los físicos y los matemáticos, de hecho personas como Poincaré o Lorentz habían estado muy cerca de llegar al mismo resultado que Einstein. La forma geométrica definitiva de la teoría se debe a Hermann Minkowski, antiguo profesor de Einstein en la Politécnica de Zürich; acuñó el término "espacio-tiempo" (Raumzeit) y le dio la forma matemática adecuada.nota 1 El espacio-tiempo de Minkowski es una variedadtetradimensional en la que se entrelazaban de una manera insoluble las tres dimensiones espaciales y el tiempo. En este espacio-tiempo de Minkowski, el movimiento de una partícula se representa mediante su línea de universo (Weltlinie), una curva cuyos puntos vienen determinados por cuatro variables distintas: las tres dimensiones espaciales  y el tiempo . El nuevo esquema de Minkowski obligó a reinterpretar los conceptos de la métrica existentes hasta entonces. El concepto tridimensional de punto fue sustituido por el de evento. La magnitud de distancia se reemplaza por la magnitud de intervalo.


Relatividad general
La relatividad general fue publicada por Einstein en 1915, y fue presentada como conferencia en la Academia de Ciencias Prusiana el 25 de noviembre. La teoría generaliza el principio de relatividad de Einstein para un observador arbitrario. Esto implica que las ecuaciones de la teoría deben tener una forma de covariancia más general que la covariancia de Lorentz usada en la teoría de la relatividad especial. Además de esto, la teoría de la relatividad general propone que la propia geometría del espacio-tiempo se ve afectada por la presencia de materia, de lo cual resulta una teoría relativista del campo gravitatorio. De hecho la teoría de la relatividad general predice que el espacio-tiempo no será plano en presencia de materia y que la curvatura del espacio-tiempo será percibida como un campo gravitatorio.
Debe notarse que el matemático alemán David Hilbert escribió e hizo públicas las ecuaciones de la covarianza antes que Einstein. Ello resultó en no pocas acusaciones de plagio contra Einstein, pero probablemente sea más, porque es una teoría (o perspectiva) geométrica. La misma postula que la presencia de masa o energía «curva» al espacio-tiempo, y esta curvatura afecta la trayectoria de los cuerpos móviles e incluso la trayectoria de la luz.
Einstein expresó el propósito de la teoría de la relatividad general para aplicar plenamente el programa de Ernst Mach de la relativización de todos los efectos de inercia, incluso añadiendo la llamada constante cosmológica a sus ecuaciones de campo 4 para este propósito. Este punto de contacto real de la influencia de Ernst Mach fue claramente identificado en 1918, cuando Einstein distingue lo que él bautizó como el principio de Mach (los efectos inerciales se derivan de la interacción de los cuerpos) del principio de la relatividad general, que se interpreta ahora como el principio de covarianza general.




 

No hay comentarios:

Publicar un comentario